Asymptotics of hierarchical clustering for growing dimension
نویسندگان
چکیده
Modern day science presentsmany challenges to data analysts. Advances in data collection provide very large (number of observations and number of dimensions) data sets. In many areas of data analysis an informative task is to find natural separations of data into homogeneous groups, i.e. clusters. In this paper we study the asymptotic behavior of hierarchical clustering in situations where both sample size and dimension grow to infinity.We derive explicit signal vs noise boundaries between different types of clustering behaviors. We also show that the clustering behavior within the boundaries is the same across a wide spectrum of asymptotic settings. © 2013 Elsevier Inc. All rights reserved.
منابع مشابه
Clustering High Dimension, Low Sample Size Data Using the Maximal Data Piling Distance
We propose a new hierarchical clustering method for high dimension, low sample size (HDLSS) data. The method utilizes the fact that each individual data vector accounts for exactly one dimension in the subspace generated by HDLSS data. The linkage that is used for measuring the distance between clusters is the orthogonal distance between affine subspaces generated by each cluster. The ideal imp...
متن کاملA New Method for Duplicate Detection Using Hierarchical Clustering of Records
Accuracy and validity of data are prerequisites of appropriate operations of any software system. Always there is possibility of occurring errors in data due to human and system faults. One of these errors is existence of duplicate records in data sources. Duplicate records refer to the same real world entity. There must be one of them in a data source, but for some reasons like aggregation of ...
متن کاملGraph Clustering by Hierarchical Singular Value Decomposition with Selectable Range for Number of Clusters Members
Graphs have so many applications in real world problems. When we deal with huge volume of data, analyzing data is difficult or sometimes impossible. In big data problems, clustering data is a useful tool for data analysis. Singular value decomposition(SVD) is one of the best algorithms for clustering graph but we do not have any choice to select the number of clusters and the number of members ...
متن کاملبه کارگیری روشهای خوشهبندی در ریزآرایه DNA
Background: Microarray DNA technology has paved the way for investigators to expressed thousands of genes in a short time. Analysis of this big amount of raw data includes normalization, clustering and classification. The present study surveys the application of clustering technique in microarray DNA analysis. Materials and methods: We analyzed data of Van’t Veer et al study dealing with BRCA1...
متن کاملDetermination of the Best Hierarchical Clustering Method for Regional Analysis of Base Flow Index in Kerman Province Catchments
The lack of complete coverage of hydrological data forces hydrologists to use the homogenization methods in regional analysis. In this research, in order to choose the best Hierarchical clustering method for regional analysis, base flow and related index were extracted from daily stream flow data using two parameter recursive digital filters in 43 hydrometric stations of the Kerman province. Ph...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Multivariate Analysis
دوره 124 شماره
صفحات -
تاریخ انتشار 2014